organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(4RS,6SR)-2-Amino-4-(4-methoxyphenyl)-6-phenyl-5,6-dihydro-4H-1,3-thiazin-3-ium chloride

Lin Lin, Jie-Ping Wan and Cui-Rong Sun*

Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China Correspondence e-mail: Suncuirong@zju.edu.cn

Received 30 June 2007; accepted 6 July 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; R factor = 0.056; wR factor = 0.167; data-to-parameter ratio = 17.6.

The title compound, $C_{17}H_{19}N_2OS^+ \cdot Cl^-$, was synthesized through a diastereoselective three-component condensation in one pot. The six-membered heterocycle adopts a half-chair conformation which is slightly twisted at 298 K. The cations and the Cl⁻ anions of the structure are connected through a two-dimensional network of N-H···Cl and C-H···Cl hydrogen bonds. Phenyl rings intercalate between layers, and no $\pi \cdot \cdot \pi$ stacking is observed in the structure.

Related literature

For syntheses of related structures, see: Barluenga et al. (1991); Sreekumar et al. (1997). For pharmacological activities and biological characteristics, see: Bourzat et al. (1991); Suárez et al. (2006). For related novel compounds and structures, see: Wan et al. (2006); Zhu et al. (2006).

Experimental

Crystal data $C_{17}H_{19}N_2OS^+ \cdot Cl^ M_r = 334.85$ Monoclinic, $P2_1/n$

a = 8.4686 (11) Åb = 18.341 (2) Å c = 11.1313 (14) Å $\beta = 102.971 \ (2)^{\circ}$

V = 1684.8 (4) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.35 \text{ mm}^{-1}$ T = 298 (2) K $0.30\,\times\,0.20\,\times\,0.20$ mm

Data collection

Bruker SMART CCD area-detector	3673 independent reflections
diffractometer	2879 reflections with $I > 2\sigma(I)$
Absorption correction: none 0217 measured reflections	$R_{\rm int} = 0.083$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.056$	H atoms treated by a mixture of
$wR(F^2) = 0.167$	independent and constrained
S = 1.07	refinement
3673 reflections	$\Delta \rho_{\rm max} = 0.56 \ {\rm e} \ {\rm \AA}^{-3}$
209 parameters	$\Delta \rho_{\rm min} = -0.31 \text{ e} \text{ Å}^{-3}$
18 restraints	

Table 1

Selected torsion angles (°).

S1-C11-N1-C8	2.4 (3)	N1-C11-S1-C10	-8.4(2)
C9-C8-N1-C11	-25.2(3)	C9-C10-S1-C11	38.43 (19)

Table 2		
Hydrogen-bond geometry	(Å.	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C10-H10···Cl1 ⁱ	0.98	2.80	3.555 (2)	135
N2-H2C···Cl1 ⁱⁱ	0.84 (4)	2.38 (4)	3.219 (3)	175 (3)
$N1 - H1A \cdots Cl1$	0.89 (3)	2.38 (3)	3.212 (2)	155 (3)
$N2 - H2D \cdots Cl1$	0.87 (3)	2.50 (3)	3.295 (2)	153 (3)

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXTL.

We thank the National Natural Science Foundation of China (grant No. 20672098) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2026).

References

- Barluenga, J., Tomás, M., Ballesteros, A. & López, L. A. (1991). J. Org. Chem. 56 5680-5684
- Bourzat, J. D., Cotrel, C., Guyon, C. & Pitchen, Ph. (1991). US Patent 4 994 569
- Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Sreekumar, R., Rugmini, P. & Padmakumar, R. (1997). Tetrahedron Lett. 38, 3179-3182
- Suárez, M., Novoa, H., Verdecia, Y., Ochoa, E., Alvarez, A., Pérez, R., Martínez-Alvarez, R., Molero, D., Seoane, C., Blaton, N. M., Peeters, O. M. & Martín, N. (2006). Tetrahedron, 62, 1365-1371.
- Wan, J.-P., Wang, D.-H., Xu, H. & Sun, C.-R. (2006). Acta Cryst. E62, 03667-03669.
- Zhu, Y. L., Huang, S. L., Wan, J. P., Pan, Y. J. & Wu, A. X. (2006). Org. Lett. 12, 2599-2602.

Acta Cryst. (2007). E63, o3842 [doi:10.1107/S1600536807033107]

(4RS,6SR)-2-Amino-4-(4-methoxyphenyl)-6-phenyl-5,6-dihydro-4H-1,3-thiazin-3-ium chloride

L. Lin, J.-P. Wan and C.-R. Sun

Comment

Sulfur-containing heterocyclic compounds represent a type of valuable structure in the heterocycle family. Thiazine is one of the typical heterocyclic structures of this family with multifunctional characters. Among this class of compounds, 1,3-thiazines are of special importance due to their pharmacological activities (Bourzat *et al.*, 1991) and biological characters (Suárez *et al.*, 2006). Presently, there are sevral methodologies developed for synthesizing certain types of 1,3-thiazine derivatives (Barluenga *et al.*, 1991; Sreekumar *et al.*, 1997). We have recently reported a novel three-component approach of building up the 5,6-dihydro-4*H*-[1,3] thiazine compounds, which starts from aromatic aldehydes, thiourea and styrene with the catalysis of TMSCI (Zhu *et al.*, 2006), as well as a crystal structure of this type (Wan *et al.*, 2006). As a continuous exploration of this novel reaction, we report here the crystal structure of the title compound, a product afforded by the aforementioned diastereoselective three-component condensation (Scheme 1).

The crystal structure analysis shows that the product presents a central heterocycle of 5,6-dihydro-4H-[1,3]thiazin rather than the isomer tetrahydropyrimidine-2(1H)-thione which may give indistinguishable spectral data with the obtained product. From the crystal structure (Figure 1) of the title compound, the core six-member ring 5,6-dihydro-4H-[1,3] thiazin adopts a slightly twisted half-chair conformation.

The general identical bond distances of C11—N1 and C11—N2 [1.314 (3)Å and 1.316 (3) Å, respectively] shows that the bond between C11 and N1 is not a normal C=N double bond, instead, the electron cloud symmetrically distributes between N1, C11 and N2. The total value of bond angles N1—C11—S1, N1—C11—N2 and N2—C11—S1 is 359.94°, which implies that N1, C11, N2, S1 locate in the same plane with a normal deviation of 0.06°. From the 2.4 (3)° torsion angles of S1—N1—C11—C8 and -8.4 (2)° of N1—C11—S1—C10, atoms C8 and C10 (Table 1) are found to be placed in the opposite sides of the plane through N1_{S1}C11, which also describes the twisted half-chair conformation of this heterocycle. The crystal is mainly stablized by the intermolecular N—H…C1 hydrogen bond, the H atoms at N1 and N2 are involved in the hydrogen bond network and form the crystal packing (Figure 2). Parameters of hydrogen bonds are given in Table 2.

Experimental

4-Methoxylbenzaldehyde (5 mmol), styrene (5 mmol) and thiourea (6 mmol) were located in a flask and 5 mmol TMSCl was added, the mixture was then refluxed and stirred in CH_3CN/DMF (3 mL/1.5 mL) for 10 h. The product deposited directly after completion of the reaction and cooling down to room temperature. The solide was filtered and the analytical pure product was afforded by recystalization of the crude product in ethanol. The proper colorless crystal for the X-ray measurement was obtained through slow evaporation of an ethanol solution.

Refinement

H atoms bonded N atoms were located in difference Fourier maps and their parameters were refined with N—H distances restrained to 0.86 (1) Å. The position of the C-bound H atoms were calculated geometrically and refined using a riding model(C—H=0.93–0.98 Å) with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. Molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. Selected N—H[…]Cl and C—H[…]Cl intermolecular hydrogen bonding interactions along the **a**-axis, indicated as dashed lines.

(4RS,6SR)-2-Amino-4-(4-methoxyphenyl)-6-phenyl-5,6-dihydro- 4H-[1,3]thiazin-3-ium chloride

Crystal data

$C_{17}H_{19}N_2OS^+ \cdot CI^-$	$F_{000} = 704$
$M_r = 334.85$	$D_{\rm x} = 1.320 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 3831 reflections
a = 8.4686 (11) Å	$\theta = 2.2 - 28.0^{\circ}$
b = 18.341 (2) Å	$\mu = 0.35 \text{ mm}^{-1}$
c = 11.1313 (14) Å	T = 298 (2) K
$\beta = 102.971 \ (2)^{\circ}$	Block, colourless
$V = 1684.8 (4) \text{ Å}^3$	$0.30 \times 0.20 \times 0.20 \text{ mm}$
Z = 4	

Data collection

CCD area-detector diffractometer	2879 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.083$
Monochromator: graphite	$\theta_{\text{max}} = 27.0^{\circ}$

T = 298(2) K	$\theta_{\min} = 2.2^{\circ}$
phi and ω scans	$h = -10 \rightarrow 10$
Absorption correction: none	$k = -23 \rightarrow 11$
10217 measured reflections	$l = -14 \rightarrow 14$
3673 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.056$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.167$	$w = 1/[\sigma^2(F_o^2) + (0.0886P)^2 + 0.2659P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.07	$(\Delta/\sigma)_{\rm max} < 0.001$
3673 reflections	$\Delta \rho_{max} = 0.56 \text{ e } \text{\AA}^{-3}$
209 parameters	$\Delta \rho_{min} = -0.31 \text{ e } \text{\AA}^{-3}$
18 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct methods	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.1126 (3)	0.15641 (13)	0.6831 (2)	0.0470 (5)
C2	-0.0516 (3)	0.17089 (14)	0.6538 (3)	0.0592 (6)
H2	-0.0986	0.1945	0.7110	0.071*
C3	-0.1468 (3)	0.15095 (16)	0.5416 (3)	0.0699 (8)
H3	-0.2569	0.1616	0.5235	0.084*
C4	-0.0808 (4)	0.11555 (15)	0.4566 (3)	0.0651 (7)
C5	0.0812 (4)	0.09883 (17)	0.4849 (3)	0.0671 (7)
Н5	0.1268	0.0736	0.4286	0.081*
C6	0.1766 (3)	0.11966 (16)	0.5978 (2)	0.0616 (7)
H6	0.2865	0.1085	0.6161	0.074*
C7	-0.1175 (6)	0.0664 (2)	0.2539 (3)	0.1092 (15)

H7A	-0.0385	0.0979	0.2312	0.164*
H7B	-0.2027	0.0568	0.1827	0.164*
H7C	-0.0669	0.0213	0.2853	0.164*
C8	0.2155 (3)	0.18024 (13)	0.8061 (2)	0.0474 (5)
H8	0.1594	0.2203	0.8372	0.057*
C9	0.2388 (3)	0.11894 (13)	0.9001 (2)	0.0515 (6)
H9A	0.1337	0.1022	0.9098	0.062*
H9B	0.2926	0.0783	0.8703	0.062*
C10	0.3383 (3)	0.14333 (14)	1.0237 (2)	0.0503 (6)
H10	0.2900	0.1882	1.0472	0.060*
C11	0.5130 (3)	0.20529 (12)	0.86732 (19)	0.0450 (5)
C12	0.3528 (3)	0.08930 (16)	1.1284 (2)	0.0611 (7)
C13	0.4089 (4)	0.1153 (2)	1.2489 (3)	0.0852 (10)
H13	0.4389	0.1640	1.2616	0.102*
C14	0.4202 (5)	0.0698 (3)	1.3481 (3)	0.1091 (15)
H14	0.4570	0.0873	1.4279	0.131*
C15	0.3759 (5)	-0.0027 (3)	1.3278 (4)	0.1068 (14)
H15	0.3872	-0.0342	1.3946	0.128*
C16	0.3156 (7)	-0.0287 (2)	1.2108 (4)	0.1208 (16)
H16	0.2835	-0.0771	1.1985	0.145*
C17	0.3031 (6)	0.01876 (19)	1.1100 (3)	0.1013 (13)
H17	0.2607	0.0020	1.0305	0.122*
Cl1	0.47385 (8)	0.26700 (5)	0.54600 (6)	0.0657 (3)
N1	0.3715 (2)	0.20775 (11)	0.78919 (18)	0.0482 (5)
H1A	0.370 (4)	0.2314 (17)	0.719 (3)	0.072*
N2	0.6421 (3)	0.23294 (14)	0.8372 (2)	0.0578 (6)
H2D	0.630 (4)	0.2502 (17)	0.763 (3)	0.069*
H2C	0.729 (4)	0.2361 (16)	0.892 (3)	0.069*
01	-0.1827 (3)	0.10034 (15)	0.3452 (2)	0.1001 (9)
S1	0.54606 (8)	0.16402 (4)	1.01166 (5)	0.0545 (2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0405 (11)	0.0522 (13)	0.0481 (12)	0.0008 (9)	0.0097 (9)	0.0073 (10)
C2	0.0428 (13)	0.0599 (15)	0.0759 (17)	0.0002 (11)	0.0155 (12)	0.0020 (12)
C3	0.0397 (13)	0.0679 (17)	0.094 (2)	-0.0023 (12)	-0.0027 (13)	0.0037 (16)
C4	0.0568 (15)	0.0593 (16)	0.0684 (17)	-0.0120 (12)	-0.0090 (13)	0.0069 (13)
C5	0.0608 (16)	0.0835 (19)	0.0547 (14)	-0.0029 (14)	0.0079 (12)	-0.0102 (14)
C6	0.0426 (13)	0.0855 (19)	0.0540 (14)	0.0044 (12)	0.0050 (10)	-0.0087 (13)
C7	0.144 (4)	0.089 (3)	0.069 (2)	-0.015 (2)	-0.030 (2)	-0.0133 (19)
C8	0.0443 (12)	0.0542 (13)	0.0450 (11)	0.0024 (10)	0.0126 (9)	0.0009 (10)
C9	0.0552 (14)	0.0542 (13)	0.0479 (12)	0.0000 (11)	0.0172 (10)	0.0037 (10)
C10	0.0540 (14)	0.0564 (14)	0.0442 (12)	0.0092 (11)	0.0190 (10)	0.0042 (10)
C11	0.0483 (12)	0.0490 (12)	0.0388 (10)	0.0034 (9)	0.0120 (9)	-0.0026 (9)
C12	0.0631 (16)	0.0752 (18)	0.0516 (13)	0.0158 (13)	0.0264 (12)	0.0149 (13)
C13	0.075 (2)	0.121 (3)	0.0552 (16)	-0.0233 (19)	0.0050 (14)	0.0215 (17)
C14	0.091 (3)	0.165 (4)	0.065 (2)	-0.029 (3)	0.0038 (18)	0.041 (2)

C15	0.111 (3)	0.131 (3)	0.082 (2)	0.024 (3)	0.030 (2)	0.056 (2)	
C16	0.193 (5)	0.077 (2)	0.114 (3)	0.029 (3)	0.081 (3)	0.028 (2)	
C17	0.183 (4)	0.068 (2)	0.0658 (18)	0.017 (2)	0.055 (2)	0.0091 (16)	
Cl1	0.0469 (4)	0.1019 (6)	0.0482 (4)	-0.0092 (3)	0.0106 (3)	0.0103 (3)	
N1	0.0471 (11)	0.0553 (11)	0.0413 (10)	-0.0030 (8)	0.0080 (8)	0.0062 (8)	
N2	0.0464 (12)	0.0820 (16)	0.0438 (11)	-0.0053 (11)	0.0078 (9)	0.0043 (11)	
O1	0.0846 (17)	0.1022 (18)	0.0880 (16)	-0.0109 (13)	-0.0347 (13)	-0.0072 (14)	
S1	0.0502 (4)	0.0734 (5)	0.0401 (3)	0.0089 (3)	0.0106 (3)	0.0058 (3)	
Geometric paran	neters (Å, °)						
C1—C6		1.372 (4)	С9—	С9—Н9В		0.97	
C1—C2		1.380 (3)	C10—C12		1.514 (3)		
C1—C8		1.513 (3)	C10–	C10—S1		1.834 (3)	
C2—C3		1.375 (4)	C10–	-H10	0.98		
С2—Н2		0.93	C11–	-N1	1.314 (3)		
C3—C4		1.366 (5)	C11–	-N2	1.316 (3)		
С3—Н3		0.93	C11–	-S1	1.741 (2)		
C4—O1		1.371 (3)	C12-	C12—C17		1.362 (5)	
C4—C5		1.372 (4)	C12-	C12—C13		1.402 (4)	
C5—C6		1.386 (4)	C13–	C13—C14		1.370 (5)	
С5—Н5		0.93	C13–	C13—H13		0.93	
С6—Н6		0.93	C14–	C15	1.386	(7)	
C7—O1		1.407 (5)	C14–	-H14	0.93		
C7—H7A		0.96	C15–	-C16	1.373	(6)	
С7—Н7В		0.96	C15–	-H15	0.93		
C7—H7C		0.96	C16–	-C17	1.405	(5)	
C8—N1		1.465 (3)	C16–	-H16	0.93		
С8—С9		1.519 (3)	C17–	-H17	0.93		
С8—Н8		0.98	N1—	N1—H1A		0.89 (3)	
C9—C10		1.510 (3)	N2—	N2—H2D		0.86 (3)	
С9—Н9А		0.97	N2—	H2C	0.84 (4)	
C6-C1-C2		117.7 (2)	С9—	C10—C12	116.1	(2)	
C6—C1—C8		122.1 (2)	С9—	C10—S1	110.0	5 (15)	
C2-C1-C8		120.2 (2)	C12-	-C10-S1	106.1	7 (17)	
C3—C2—C1		121.2 (3)	С9—	С10—Н10	108.1		
С3—С2—Н2		119.4	C12-	-С10—Н10	108.1		
С1—С2—Н2		119.4	S1—0	С10—Н10	108.1		
C4—C3—C2		120.5 (3)	N1—	C11—N2	120.3	(2)	
С4—С3—Н3		119.7	N1—	C11—S1	124.04	4 (18)	
С2—С3—Н3		119.7	N2—	C11—S1	115.6	0 (18)	
C3—C4—O1		116.8 (3)	C17–	-C12-C13	119.6	(3)	
C3—C4—C5		119.4 (3)	C17–	-C12C10	122.5	(3)	
O1—C4—C5		123.8 (3)	C13–	-C12C10	117.7	(3)	
C4—C5—C6		119.7 (3)	C14–	-C13C12	120.7	(4)	
С4—С5—Н5		120.1	C14–	-С13—Н13	119.6		
С6—С5—Н5		120.1	C12–	С12—С13—Н13 119.			
C1—C6—C5		121.5 (2)	C13–	-C14C15	119.0	(4)	
C1-C6-H6		119.2	C13–	-C14H14	120.5		

С5—С6—Н6	119.2	C15—C14—H14	120.5
O1—C7—H7A	109.5	C16—C15—C14	121.2 (3)
O1—C7—H7B	109.5	C16—C15—H15	119.4
H7A—C7—H7B	109.5	C14—C15—H15	119.4
O1—C7—H7C	109.5	C15—C16—C17	119.1 (4)
H7A—C7—H7C	109.5	C15—C16—H16	120.4
H7B—C7—H7C	109.5	С17—С16—Н16	120.4
N1—C8—C1	109.66 (18)	C12—C17—C16	120.2 (4)
N1—C8—C9	111.24 (19)	С12—С17—Н17	119.9
C1—C8—C9	111.7 (2)	С16—С17—Н17	119.9
N1—C8—H8	108.1	C11—N1—C8	128.1 (2)
С1—С8—Н8	108.1	C11—N1—H1A	115 (2)
С9—С8—Н8	108.1	C8—N1—H1A	117 (2)
C10—C9—C8	111.6 (2)	C11—N2—H2D	117 (2)
С10—С9—Н9А	109.3	C11—N2—H2C	119 (2)
С8—С9—Н9А	109.3	H2D—N2—H2C	124 (3)
С10—С9—Н9В	109.3	C4—O1—C7	118.3 (3)
С8—С9—Н9В	109.3	C11—S1—C10	101.48 (11)
Н9А—С9—Н9В	108.0		
C6—C1—C2—C3	-1.8 (4)	C9—C10—C12—C13	-164.8 (3)
C8—C1—C2—C3	178.7 (2)	S1—C10—C12—C13	72.5 (3)
C1—C2—C3—C4	0.6 (4)	C17—C12—C13—C14	2.5 (5)
C2—C3—C4—O1	-177.4 (3)	C10-C12-C13-C14	178.0 (3)
C2—C3—C4—C5	1.1 (4)	C12-C13-C14-C15	0.3 (6)
C3—C4—C5—C6	-1.7 (4)	C13-C14-C15-C16	-2.5 (7)
O1—C4—C5—C6	176.7 (3)	C14—C15—C16—C17	1.8 (7)
C2—C1—C6—C5	1.2 (4)	C13-C12-C17-C16	-3.2 (6)
C8—C1—C6—C5	-179.3 (2)	C10-C12-C17-C16	-178.5 (3)
C4—C5—C6—C1	0.5 (5)	C15-C16-C17-C12	1.1 (7)
C6—C1—C8—N1	40.5 (3)	N2-C11-N1-C8	-179.9 (2)
C2-C1-C8-N1	-140.0 (2)	S1—C11—N1—C8	2.4 (3)
C6—C1—C8—C9	-83.2 (3)	C1C8	-149.2 (2)
C2—C1—C8—C9	96.3 (3)	C9—C8—N1—C11	-25.2 (3)
N1-C8-C9-C10	58.5 (3)	C3—C4—O1—C7	177.6 (3)
C1—C8—C9—C10	-178.66 (19)	C5-C4-O1-C7	-0.8 (5)
C8—C9—C10—C12	173.1 (2)	N1-C11-S1-C10	-8.4 (2)
C8—C9—C10—S1	-66.3 (2)	N2-C11-S1-C10	173.75 (19)
C9—C10—C12—C17	10.5 (4)	C9—C10—S1—C11	38.43 (19)
S1—C10—C12—C17	-112.1 (3)	C12—C10—S1—C11	164.80 (17)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A				
C10—H10···Cl1 ⁱ	0.98	2.80	3.555 (2)	135				
N2—H2C…Cl1 ⁱⁱ	0.84 (4)	2.38 (4)	3.219 (3)	175 (3)				
N1—H1A…Cl1	0.89 (3)	2.38 (3)	3.212 (2)	155 (3)				
N2—H2D···Cl1	0.87 (3)	2.50 (3)	3.295 (2)	153 (3)				
Symmetry codes: (i) $x-1/2$, $-y+1/2$, $z+1/2$; (ii) $x+1/2$, $-y+1/2$, $z+1/2$.								

